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The logarithmic variance of streamwise velocity
and k−1 conundrum in wall turbulence
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The logarithmic dependence of streamwise turbulence intensity has been observed
repeatedly in recent experimental and direct numerical simulation data. However, its
spectral counterpart, a well-developed k−1 spectrum (k is the spatial wavenumber in
a wall-parallel direction), has not been convincingly observed from the same data. In
the present study, we revisit the spectrum-based attached eddy model of Perry and
co-workers, who proposed the emergence of a k−1 spectrum in the inviscid limit, for
small but finite z/δ and for finite Reynolds numbers (z is the wall-normal coordinate,
and δ is the outer length scale). In the upper logarithmic layer (or inertial sublayer), a
reexamination reveals that the intensity of the spectrum must vary with the wall-normal
location at order of z/δ, consistent with the early observation argued with ‘incomplete
similarity’. The streamwise turbulence intensity is subsequently calculated, demonstrating
that the existence of a well-developed k−1 spectrum is not a necessary condition for
the approximate logarithmic wall-normal dependence of turbulence intensity – a more
general condition is the existence of a premultiplied power-spectral intensity of O(1) for
O(1/δ) < k < O(1/z). Furthermore, it is shown that the Townsend–Perry constant must
be weakly dependent on the Reynolds number. Finally, the analysis is semi-empirically
extended to the lower logarithmic layer (or mesolayer), and a near-wall correction for the
turbulence intensity is subsequently proposed. All the predictions of the proposed model
and the related analyses/assumptions are validated with high-fidelity experimental data
(Samie et al., J. Fluid Mech., vol. 851, 2018, pp. 391–415).
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1. Introduction

Despite the debate on its precise form, the logarithmic profile for mean velocity has been
understood as the most fundamental feature of wall-bounded turbulence (von Kármán
1930). The attached eddy hypothesis of Townsend (1956, 1976) was built upon this
feature and states the possible existence of energy-containing motions, the size of which is
proportional to their distance from the wall (i.e. attached eddies) (see also Hwang & Lee
2020, for the theoretical basis of the hypothesis). Townsend (1956, 1976) subsequently
introduced a generic form of the second-order statistical moments of the individual
energy-containing eddies under the assumption that they behave ‘inviscidly’ as in a
Biot–Savart model in the region close to the wall: i.e. a slip boundary condition is
considered for the wall-parallel velocity components, while the no-penetration condition
is imposed on the wall-normal velocity. He then showed that linear superposition of the
second-order statistical moments subject to constant Reynolds shear stress leads to

u′u′

u2
τ

= −A ln
( z
δ

)
+ B, (1.1)

where u′ is the streamwise turbulent velocity fluctuation, uτ is the friction velocity, z
is the wall-normal coordinate, δ is the outer length scale (e.g. half height of channel,
radius of pipe and thickness of boundary layer), A is the Townsend–Perry constant and
B is a constant. Several important refinements of the original theory of Townsend (1956,
1976) were subsequently made. These include: (1) the description of the logarithmic mean
velocity in terms of the mean vorticity of individual attached eddies (e.g. Perry & Chong
1982; Perry, Henbest & Chong 1986); (2) the prescription of a more realistic statistical
form of the individual attached eddy (Perry & Chong 1982; Perry et al. 1986; Woodcock
& Marusic 2015); (3) relating the physical-space model of Townsend (1956, 1976) to k−1

behaviour in velocity spectra (k is the spatial wavenumber in a wall-parallel direction)
(Perry & Chong 1982; Perry et al. 1986); (4) the empirical extensions to the near-wall
region (Marusic & Kunkel 2003); and (5) the generalisation of (1.1) for higher-order
turbulence statistics (Meneveau & Marusic 2013).

Over the past two decades, a substantial amount of evidence supporting the attached
eddy hypothesis and related models has emerged (see also Marusic & Monty 2019). For
example, laboratory experiments and numerical simulations have repeatedly confirmed
that (1.1) is indeed a first approximation to the streamwise and spanwise turbulence
intensities in the logarithmic layer (Jiménez & Hoyas 2008; Hultmark et al. 2012; Marusic
et al. 2013; Lee & Moser 2015; Baars & Marusic 2020b). The existence and the statistical
structure of self-similar energy-containing motions in the logarithmic layer have also been
reported with various types of eddy-extraction techniques (del Álamo et al. 2006; Hwang
& Cossu 2011; Lozano-Durán & Jiménez 2014; Hwang 2015; Hellstöm, Marusic & Smits
2016; Hwang & Bengana 2016; Hwang & Sung 2018; Cheng et al. 2019; Baars & Marusic
2020a). Finally, mathematical analyses of the Navier–Stokes equations have consistently
revealed that the key feature of the logarithmic layer is self-similarity with the distance
from the wall, which underpins the scaling of the mean, linear and nonlinear dynamics
(del Álamo & Jiménez 2006; Hwang & Cossu 2010; Klewicki 2013; Moarref et al. 2013;
Hwang 2016; Hwang, Willis & Cossu 2016; McKeon 2017; Eckhardt & Zammert 2018;
Doohan, Willis & Hwang 2019; McKeon 2019; Vadarevu et al. 2019; Yang, Willis &
Hwang 2019; Hwang & Eckhardt 2020; Hwang & Lee 2020; Skouloudis & Hwang 2021).

Despite the growing evidence, the description of velocity spectra in terms of the attached
eddy models still remains unsettled. In the earliest work (Perry & Chong 1982; Perry et al.
1986), it was proposed that the existence of a k−1 spectrum with the intensity of A in
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The logarithmic variance and k−1 conundrum

(1.1) would be consistent with the logarithmic wall-normal dependence of streamwise
turbulence intensity (see also § 2.1). In particular, the inviscid theory of Perry et al.
(1986) showed that such a k−1 spectrum would emerge in the region where the spectrum
is expected to scale simultaneously in z and δ. However, early measurements from
the Princeton Superpipe did not show a clearly discerned k−1 spectrum, and this was
subsequently postulated as a consequence of ‘incomplete similarity’ by arguing that the
simultaneous scaling with z and δ may not be possible (Morrison et al. 2001, 2004).
It was later suggested that a well-developed k−1 spectrum could appear in the location
closer to the wall (Nickels et al. 2005), although the proposed location is too close
to the wall to directly relate to (1.1), which typically appears in the upper logarithmic
layer (Marusic et al. 2013; Vallikivi, Hultmark & Smits 2015; Vassilicos et al. 2015), i.e.
O(Re−1/2

τ ) � y/δ � 0.15 (Reτ = uτ δ/ν is the friction Reynolds number, where ν is the
kinematic viscosity) or the layer just above the ‘mesolayer’ (Afzal 1982; Sreenivasan &
Sahay 1997; Wei et al. 2005; Klewicki 2013). Furthermore, it was recently suggested that
a well-visible k−1 spectrum responsible for (1.1) might appear at least for Reτ � 8 × 104

(Samie et al. 2018; Baars & Marusic 2020a). In this respect, it should finally be mentioned
that an alternative form of k−1 spectrum was also recently proposed by Srinath et al.
(2018) based on a space-filling argument of energy-containing motions, although their
model does not necessarily rely on the existence of self-similar energy-containing motions
(i.e. attached eddy hypothesis).

The objective of the present study is to propose a spectrum-based attached eddy
model that integrates the seemingly inconsistent observations listed above into a single
framework. To this end, we revisit the spectrum-based attached eddy model of Perry et al.
(1986), which is based on the work of Perry & Abel (1977). We re-examine the underlying
assumptions in the model with the high-fidelity experimental data from Samie et al. (2018).
We subsequently extend the model for small but finite z/δ and finite Reynolds number, so
that its application becomes directly suitable to the location where (1.1) has been observed
(layer I in figure 2). The examination reveals that, in general, the intensity of the spectrum
for 1/δ � k � 1/z must vary with the wall-normal direction at O(z/δ) without assuming a
well-developed k−1 spectrum. The presence of such a complicated spectrum in the absence
of a k−1 spectrum is, however, found not to affect the form of streamwise turbulence
intensity in (1.1) significantly – indeed, the Townsend–Perry constant A is found to be only
weakly dependent on the Reynolds number due to viscous wall effects. The theoretical
framework is further extended to the mesolayer (layer II in figure 2), and a near-wall
correction is subsequently proposed. The theoretical developments made in the present
study are validated with the high-fidelity experimental data of Samie et al. (2018).

2. Background

2.1. The original model
We first revisit the original spectrum-based attached eddy model of Perry et al. (1986),
focusing on the streamwise velocity in a turbulent boundary layer, the thickness of which
is given by δ. The modelling efforts start with the streamwise turbulence intensity given
in terms of the power-spectral density:

u′u′(z) =
∫ ∞

0
Φuu(kx, z) dkx, (2.1)

where Φuu(kx, z) is the power-spectral density of streamwise velocity at each wall-normal
location z, and kx is the streamwise wavenumber. As in Townsend (1976), only the flow
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above the thin viscous sublayer was considered, assuming that the flow is inviscid with
finite slip velocity at the boundary. Under this assumption, the power-spectral density Φuu
is expected to be a function of uτ , kx, z and δ. Further to this, z � δ was assumed, given
the wall-normal location of interest (i.e. the logarithmic layer).

Under the two assumptions (i.e. Reτ → ∞ and z � δ), the model yields a
power-spectral density of streamwise velocity schematically depicted in figure 1. At
a given wall-normal location z � δ, energy-containing eddies of outer scale would
contribute to the wavenumbers of kx ∼ O(1/δ) through their inactive component (Perry
& Abel 1977; Perry et al. 1986). In this range of wavenumbers, the assumption of z � δ

implies that the power-spectral density can further be assumed to be independent of z/δ.
Using (2.1), the power-spectral density for kx ∼ O(1/δ) is then given by

Φuu(kx, z)
u2
τ

= δ Φuu(kxδ)

u2
τ

= δ g1(kxδ). (2.2a)

The premultiplied power-spectral density is subsequently written as

kx Φuu(kx, z)
u2
τ

= kxδ g1(kxδ) = h1(kxδ), (2.2b)

as sketched in the δ-scaling region of figure 1. For the wavenumbers of kx ∼ O(1/z), the
power-spectral density would not be a function of δ, as only eddies scaling in z would
contribute to these wavenumbers. Therefore, at z � δ, the power-spectral density for kx ∼
O(1/z) becomes

Φuu(kx, z)
u2
τ

= z Φuu(kxz)
u2
τ

= z g2(kxz), (2.3a)

and the corresponding premultiplied power-spectral density is

kx Φuu(kx, z)
u2
τ

= kxz g2(kxz) = h2(kxz). (2.3b)

This is sketched in the z-scaling region in figure 1. The power spectrum for very high
kx should obviously be related to the energy cascade (the Kolmogrov scaling region in
figure 1). Therefore it follows the scaling of inertial subrange (k−5/3

x spectrum) and the
dissipation at the Kolmogorov length scale η (Perry et al. 1986). The details of this part
of the spectrum will not, however, be pursued here because its contribution to turbulence
intensity would be small.

We now consider the wavenumber region of 1/δ � kx � 1/z (the overlap region in
figure 1). In this region, it was argued that both of the scalings in (2.2b) and (2.3b) would
simultaneously be valid. Here, note that h1 in (2.2b) is a function of only kxδ, while h2 in
(2.3b) is a function of kxz. Therefore matching between (2.2b) and (2.3b) leads to

h1(kxz) = h2(kxδ) = A, (2.4)

where A is a constant independent of both kxz and kxδ, resulting in the following power
spectrum:

Φuu(kx, z)
u2
τ

= A
kx

. (2.5)

933 A8-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
57

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

el
bo

ur
ne

 L
ib

ra
ry

, o
n 

30
 M

ar
 2

02
2 

at
 0

1:
47

:0
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.1057
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


The logarithmic variance and k−1 conundrum

ln (a/δ) ln (b/z) ln (kx)

kx
–1

A

kxΦuu(kx)

u2
τ

spectrum

Overlap region

Inertial subrange &

Kolmogorov

scaling

Area ~ A ln
z
δ

δ-scaling

z-scaling

Figure 1. A schematic diagram of the streamwise velocity spectrum for the attached eddy model of Perry et al.
(1986). Here, the overlap region (i.e. inertial subrange) between z-scaling and dissipation (Kolmogorov) scaling
and the dissipation scaling region are merged into a single region for simplicity (see text). Note that this is only
a conceptual sketch introduced to explain the model of Perry et al. (1986). Therefore it does not necessarily
reflect the experimentally measured spectrum of streamwise velocity, especially when the Reynolds number is
not sufficiently high.

Using (2.1), (2.2b), (2.3b) and (2.5), the streamwise turbulence intensity, which is the
area below the curve for the power-spectral density in figure 1, is obtained as

u′u′

u2
τ

=
∫ ∞

−∞
kx Φuu(kx; z)

u2
τ

d(ln kx) =
∫ ln(b/z)

ln(a/δ)

kx Φuu(kx)

u2
τ

d(ln kx) + C(z; Reτ )

= −A ln
( z
δ

)
+ B(z; Reτ ), (2.6a)

where a and b are the constants defining the wavenumber boundaries of the k−1
x region

(blue-shaded region in figure 1) and

B(z; Reτ ) = A ln
(a

b

)
+ C(z; Reτ ), (2.6b)

C (z; Reτ ) = u′u′

u2
τ

−
∫ ln(b/z)

ln(a/δ)

kx Φuu(kx)

u2
τ

d(ln kx). (2.6c)

Here, C(z; Reτ ) depicts the contribution from the remainder of the latter integral in (2.6a),
and it should be a weak function of z and Reτ due to the small contribution made from
the Kolmogorov-scaling part of the spectrum. (Note that under the original assumptions of
Perry et al. (1986), the contribution from the outer-scaling part for kx ≤ a/δ to C(z; Reτ )

does not depend on z and Reτ ; see (2.2a).) If this contribution is ignored, then B and C
become constants, leading (2.6a) to be identical to (1.1) from Townsend (1976). We note
that (1.1) in Townsend (1976) was obtained by ignoring the contribution from small-scale
eddies for energy cascade and dissipation. Therefore the two models by Townsend (1976)
and by Perry et al. (1986), the former of which was built in physical space and the latter in
spectral space, become consistent.

2.2. Scaling of streamwise velocity spectra
Now we examine the spectrum-based attached eddy model of Perry et al. (1986) using
the experimental data from Samie et al. (2018). These data were taken from the high
Reynolds number boundary layer wind tunnel located at the University of Melbourne.
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The boundary-layer thickness δ and friction velocity uτ were estimated by fitting
the measured experimental data to a composite law of the wall/wake curve in
Chauhan, Monkewitz & Nagib (2010). Samie et al. (2018) compared their estimates
for uτ from the composite fit to those measured directly by Baars et al. (2016)
with a floating element drag balance, in the same facility, and matched x and
U∞ (free-stream velocity) to the two highest Reynolds numbers of Samie et al.
(2018), finding agreement to within ±1% The near-wall region is fully resolved
using the nanoscale thermal anemometry probes (NSTAPs) (Vallikivi & Smits
2014). The Reynolds numbers considered are Reτ = 6123, 10 100, 14 680, 19 680.
For further details on the experiment, the reader may refer to Samie et al.
(2018).

Figure 2 shows the contours of the premultiplied streamwise power-spectral density
of streamwise velocity at Reτ = 19 680, in which the two red straight lines indicate
λx = z and λx = 10δ. We first define the conventional logarithmic layer with a relatively
conservative limit: z ∈ [zi, zo] where z+

i = 200 and zo = 0.1δ (the superscript + denotes
the normalisation with δν(= ν/uτ ) and uτ ). As was proposed previously (Afzal 1982;
Sreenivasan & Sahay 1997; Wei et al. 2005; Klewicki 2013), the logarithmic layer may
be partitioned further into two sublayers with the boundary at z+

m = 3.6Re1/2
τ : i.e. layer I

for z ∈ [zm, zo], and layer II for z ∈ [zi, zm]. Here, we note that the location of zm is a little
below the empirical wall-normal location of the outer peak in the spectra (z+

m = 3.9Re1/2
τ )

proposed by Mathis, Hutchins & Marusic (2009).

(i) Layer I (inertial sublayer): in this layer, the inertial effect would dominate the viscous
wall effect. Given the inviscid-flow assumption of Perry et al. (1986), this is the
location where their model is supposed to be directly applicable. Indeed, the contour
lines for λx � 10δ in figure 2 change little along the z-direction and remain mostly
parallel to λx = 10δ, indicating that (2.2b) would be a good approximation for
λx � 10δ. Similarly, the contour lines for 10−2δ ≤ λx ≤ δ are approximately parallel
to λx = z, consistent with (2.3b). These scaling behaviours are more precisely
confirmed in figure 3 – the spectra in layer I follow the scaling of (2.2b) for λx � 10δ

(figure 3a) and they do so with (2.3b) for z � λx � 10z (figure 3b). Despite the
scaling behaviours being fully consistent with (2.2b) and (2.3b), the spectra in
between (10z ≤ λx ≤ 10δ) do not seem to exhibit a well-developed k−1

x behaviour.
Furthermore, the values of the spectra vary non-negligibly with z, indicating that
there is an issue in comparing (2.5) with the experimental data (e.g. Morrison et al.
2001, 2004; Rosenberg et al. 2013). These issues will be discussed in depth in § 3.

(ii) Layer II (mesolayer): given the nature of the mean momentum balance in this layer
(Afzal 1982; Sreenivasan & Sahay 1997; Wei et al. 2005; Klewicki 2013), the
viscous wall effect would be more important than the inertial effect. In particular,
the premultiplied power-spectral density for λx � 10δ appears to become weaker as
z → 0, and the related contour lines in figure 2 are not parallel to λx = 10δ. On the
contrary, the power-spectral density for 10−2δ ≤ λx ≤ 10−1δ still appears to follow
(2.3b), as the contour lines in figure 2 are approximately parallel to λx = z (see also
figure 7). This is also confirmed in figure 3 – the spectra in layer II do not precisely
follow the scaling of (2.2b) for λx � 10δ (figure 3c), while they show a behaviour
consistent with (2.3b) for z � λx � 10z (figure 3d). These observations will be the
basis of the model for layer II in § 4, obtained by extending the one in § 3.

We note that the classification of the logarithmic layer into layers I and II in the present
study is based on the streamwise velocity spectra, not on the mean velocity. Given the
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+
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Figure 2. Premultiplied streamwise power-spectral density of streamwise velocity (k+
x Φ+

uu(z; kx)) at
Reτ 	 19 680 (data from Samie et al. 2018). The contour lines are k+

x Φ+
uu(z; kx) = 0.25, 0.5, 0.75,

1, 1.25, 1.5, 1.75, 2.0. Here, the logarithmic layer from z+ = 200 to z/δ = 0.1 is divided into two sublayers:
layer I (inertial sublayer) and layer II (mesolayer). The two red solid lines indicate λx = z and λz = 10δ,
as labelled.

10–3
0

0.5

1.0

1.5

10–2 10–1 100 101 102 103

λx/δ

0

0.5

1.0

1.5

10–1 100 101 102 103 104 105

λx/δ

λx/δ = 10

λx/z = 1

z

z+ = 235
z+ = 287

z+ = 352

z+ = 431
z+ = 528

z
zk x+

Φ
+ uu

AII = 0.88 AII = 0.88

10–3
0

0.5

1.0

1.5

10–2 10–1 100 101 102 103
0

0.5

1.0

1.5

10–2 10–1 100 101 102 103 104 105

λx/δ = 10 λx/z = 1z

z+ = 528
z+ = 791

z+ = 1185

z+ = 1450
z+ = 1774

zk x+
Φ

+ uu

AI = 1.09 AI = 1.09

(a) (b)

(c) (d)

Figure 3. Premultiplied streamwise power-spectral density of streamwise velocity in (a,b) layer I and
(c,d) layer II at Reτ = 19 680: (a,c) δ-scaling, and (b,d) z-scaling. The arrows indicate the directions of
increasing z.
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streamwise mean momentum equation for a turbulent boundary layer, the streamwise
mean velocity is mostly related to the Reynolds shear stress like channel and pipe flows.
However, the fluctuations of the streamwise velocity carry a substantial amount of motions
that contain little Reynolds shear stress. Such motions have been referred to as ‘inactive’
motions (Townsend 1976), which appear to be particularly important in the region close
to the wall (Hwang 2015, 2016; Cho, Hwang & Choi 2018; Baars & Marusic 2020a;
Deshpande, Monty & Marusic 2020). These motions do not necessarily have strong effect
on the mean velocity. Therefore the empirical scaling of z+

m(= 3.6Re1/2
τ ) used here is not

necessarily the same as the wall-normal location (say zR) that has been used to partition
the inertial sublayer and the mesolayer based on the Reynolds shear stress (i.e. zR is the
location where the Reynolds shear stress is maximum). Indeed, an empirical value of z+

R
is given by z+

R = 1.9Re1/2
τ (Afzal & Yajnik 1973; Afzal 1976, 1982; Sreenivasan & Sahay

1997; Wei et al. 2005; Jiménez & Moser 2007; Klewicki 2013), indicating that zm > zR.
This implies that the Reynolds shear stress would slightly decrease with z in layer I and
that the peak Reynolds shear stress is located in layer II.

3. Proposed model

We first consider layer I, where the scalings in (2.2b) and (2.3b) were found to be consistent
with the experimental data. The inviscid flow assumption of Perry et al. (1986) would still
be applicable because the streamwise velocity is not zero at the lower boundary of layer I
(z = zm). However, the assumption of z � δ needs to be dealt with more carefully, if the
Reynolds number is not infinite. Indeed, even at the highest Reynolds number considered
in Samie et al. (2018) (Reτ = 19 680), zm 	 0.025δ and zo = 0.1δ. Therefore, in layer
I, the value of z/δ is not infinitesimal, but only small and finite with z/δ varying from
O(Re−1/2

τ ) to O(10−1). This implies that the assumption of z � δ in Perry et al. (1986)
would not strictly be valid in most of layer I even at Reτ = 19 680.

3.1. Spectrum at 1/δ � kx � 1/z for small and finite z/δ
If z/δ is finite in the region of interest, then the power-spectral density for kx ∼ O(1/δ)

and kx ∼ O(1/z) would not strictly be independent of z/δ. Such a behaviour is particularly
pronounced in the region above layer I where z/δ is not small: indeed, the contour lines
of the premultiplied spectra in figure 2 are not parallel to λx = 10δ and λx = z. Therefore,
without loss of generality, the premultiplied spectra in (2.2b) and (2.3b) should be replaced
with

kx Φuu(kx, z)
u2
τ

= kxδ Φuu(kxδ, z/δ)
u2
τ

= h̃1

(
kxδ,

z
δ

)
(3.1a)

and
kx Φuu(kx, z)

u2
τ

= kxz Φuu(kxz, z/δ)
u2
τ

= h̃2

(
kxz,

z
δ

)
, (3.1b)

respectively. Considering a z/δ-dependence of the spectrum for kx ∼ O(1/δ) and kx ∼
O(1/z) is physically more sound and offers more modelling flexibility. Indeed, (3.1a)
would allow one to account for any wall-normal variation of outer-scaling structures such
as superstructures/very-large-scale motions, while (3.1b) allows one to consider directly
the small wall-normal variation in the z-scaling spectrum caused by the energy cascade.

Now (3.1a) and (3.1b) are considered for 1/δ � kx � 1/z. For 1/δ � kx � 1/z, the
spectrum should satisfy h̃1(kxδ, z/δ) = h̃2(kxz, z/δ). Here, kxz and kxδ must be treated as
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two independent variables, because the two scaling laws in (3.1a) and (3.1b) from the
Buckingham π theorem are introduced to cover different values of kx at all admissible
small z/δ (Hinch 1991). While this may be a useful feature to proceed further to identify
the form of spectrum for 1/δ � kx � 1/z, here we shall write the following form of the
premultiplied spectrum without loss of generality:

kx Φuu(kx, z)
u2
τ

= h
(

kxlI,
z
δ

)
, (3.2)

leading to
Φuu(kx, z)

u2
τ

= h(kxlI, z/δ)
kx

, (3.3)

where lI is an appropriate length scale that can be chosen for z � lI � δ in the range of
1/δ � kx � 1/z. Here, we note that only the condition of z/δ → 0 is relaxed compared
to Perry et al. (1986), as we are concerned with finite Reynolds number and turbulence
intensity for layer I. While we assume that there is no explicit form of the spectrum
available for 1/δ � kx � 1/z, the form of (3.3) raises several non-trivial issues to be
discussed as follows.

(i) The spectrum for O(1/δ) < kx < O(1/z): while (3.3) provides a general form of the
spectrum for 1/δ � kx � 1/z, this part of the spectrum should not be interpreted as
an outcome of simultaneous ‘physical’ contribution of δ- and z-scaling motions,
as was argued in Perry et al. (1986). We note that the logarithmic wall-normal
dependence of the u variance in the original theory of Townsend (1976) is due to
the wall-reaching inactive motions of each attached eddy, the size of which varies
from O(z) to O(δ). In other words, the non-zero spectrum for O(1/δ) < kx < O(1/z)
should be primarily from the contribution of the inactive motions of those attached
eddies, as was also directly confirmed by the recent work of Deshpande et al. (2020).

(ii) Relation to the original model: now let us assume Reτ → ∞, so that the lower
boundary of layer I reaches the wall (i.e. zm → 0). In this case, using the Taylor
series expansion about z = 0, the premultiplied power-spectral intensity in (3.1a),
(3.1b) and (3.3) can further be approximated with

h̃1(kxδ, z/δ) = h̃1(kxδ, 0) + ∂ h̃1(kxδ, 0)

∂(z/δ)

( z
δ

)
+ O

(
z2

δ2

)
(3.4a)

for kx ∼ O(1/δ),

h̃2(kxz, z/δ) = h̃2(kxz, 0) + ∂ h̃2(kxz, 0)

∂(z/δ)

( z
δ

)
+ O

(
z2

δ2

)
(3.4b)

for kx ∼ O(1/z), and

h(kxlI, z/δ) = h(kxlI, 0) + ∂h(kxlI, 0)

∂(z/δ)

( z
δ

)
+ O

(
z2

δ2

)
(3.4c)

for 1/δ � kx � 1/z, respectively. If the prediction (2.5) given by Perry et al. (1986)
is correct, it is now expected that h(kxlI, 0) → A in the limit as z/δ → 0. Although
the detailed convergence to this possible limiting behaviour would be answered only
by additional measurements at higher Reynolds numbers, it is evident that in this
limit, (3.1a), (3.1b) and (3.3) become identical to (2.2b), (2.3b) and (2.5) by setting
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h̃1(kxδ, 0) = h1(kxδ), h̃2(kxz, 0) = h2(kxz) and h(kxlI, 0) = A. This implies that the
original model of Perry et al. (1986) would be strictly valid in the limit as z/δ → 0.
As such, the emergence of a well-developed k−1

x spectrum in the sense of Perry
et al. (1986) might be observed only for very small z/δ at extremely high Reynolds
numbers, as was recently proposed by Baars & Marusic (2020a). Care therefore
needs to be taken in interpreting (2.5) obtained from Perry et al. (1986) for the
experimental data where z/δ is not infinitesimal but small. In fact, (3.4c) indicates
that the wall-normal variation of the spectral intensity for 1/δ � kx � 1/z would be
of O(z/δ). Since z/δ ∼ O(10−1) in layer I, the premultiplied spectrum for O(1/δ) <

kx < O(1/z) is expected to change with z/δ at least by O(10−1). This is exactly seen
in the experimental data in figure 3 as well as in other previous papers (Morrison
et al. 2001, 2004; Rosenberg et al. 2013), and it is due to the ‘finite z/δ’ of the
measurement locations at finite Reynolds numbers.

(iii) Townsend–Perry constant: The general form of spectrum given by (3.3) suggests that
in practice (at finite Reynolds number and finite z/δ), the premultiplied spectrum in
the absence of a well-developed k−1

x spectrum in layer I would offer little insight
into the Townsend–Perry constant A (see (2.5)). This also implies that the log-linear
behaviour of the streamwise turbulence intensity, previously reported to emerge in
the form of (1.1) (e.g. Marusic et al. 2013), is not the one expected directly from
the model of Perry et al. (1986), because the spectrum intensity varies with z/δ
without necessarily exhibiting a well-developed k−1

x spectrum. In this respect, it
is now important to understand how the logarithmic wall-normal dependence of
streamwise turbulence intensity would emerge without having a k−1

x spectrum.

3.2. Turbulence intensity
From the discussion given above, a schematic diagram of the premultiplied power-spectral
density for the model in the present study is sketched in figure 4. This schematic diagram is
also consistent with the spectra observed in figure 3 (compare figure 3 with figure 4). The
primary differences from the schematic diagram in figure 1 are: (1) a non-trivial form of
spectrum for 1/δ � k � 1/z; (2) the intensity dependent on z/δ for all kx; (3) the spectrum
with order unity intensity for kx ∈ [aI/δ, bI/δ] from (3.1a) and (3.1b) (red-shaded region
in figure 4), where aI and bI are O(1) constants to be defined below. In this model, the
spectrum for aI/δ ≤ kx ≤ bI/z is set to take the following form without loss of generality:

kx Φuu(kx, z)
u2
τ

= h
(

kxlI,
z
δ

)
for aI/δ � kx � bI/z, (3.5a)

and aI and bI are given such that
kx Φuu(kx, z)

u2
τ

∼ O(AI,0) for aI/δ ≤ kx ≤ bI/z, (3.5b)

where AI,0 is a constant of O(1), and such that �AI,0(kxlI, z/δ)(≡ kx Φ(kx, z)/u2
τ − AI,0)

satisfies ∫ ln(bI/z)

ln(aI/δ)

�AI,0

(
kxlI,

z
δ

)
d(ln kx)︸ ︷︷ ︸

≡AI,1(z/δ)

∼ O
( z
δ

)
. (3.5c)

In other words, with the spectrum, AI,0, aI and bI can be chosen such that the area below
the premultiplied spectrum for aI/δ ≤ kx ≤ bI/z is approximated by the red-shaded region
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ln (aI/δ) ln (bI/z) ln (kx)

AI,0 ~ O(1)

�AI,0 = kxΦuu(kx)/u
2
τ – AI,0

kxΦuu(kx)

u2
τ

Inertial subrange &

Kolmogorov

scalingArea ~ –AI,0 ln
z
δ

δ-scaling

z-scaling

Figure 4. A schematic diagram of the proposed model in the present study for the spectra in layer I.

in figure 4 with an error of O(z/δ). We note that such a choice of AI,0, aI and bI must
always be possible, because the mean-value theorem for integrals ensures the existence of
AI,M(z/δ) satisfying

AI,M(z/δ) =
[

ln
(

bI

z

)
− ln

(aI

δ

)]−1 ∫ ln(bI/z)

ln(aI/δ)

kx Φuu(kx, z/δ)
u2
τ

d(ln kx). (3.6a)

Here, AI,M(z/δ) can further be written such that

AI,M(z/δ) = AI,0 + AI,1(z/δ), (3.6b)

where AI,1(z/δ) remains at O(z/δ) by applying the Taylor series expansion to AI,M(z/δ) at
any wall-normal location in layer I.

From (2.1) and (3.6), the streamwise turbulence intensity is now written as

u′u′

u2
τ

=
∫ ∞

−∞
kx Φuu(kx; z)

u2
τ

d(ln kx) =
∫ ln(bI/z)

ln(aI/δ)

kx Φuu(kx)

u2
τ

d(ln kx) + CI(z; Reτ )

=
[
AI,0 + AI,1

( z
δ

)] [
ln

(
bI

z

)
− ln

(aI

δ

)]
+ CI(z; Reτ )

= −
[
AI,0 + AI,1

( z
δ

)]
ln

( z
δ

)
+ BI(z; Reτ ), (3.7a)

where

CI (z; Reτ ) = u′u′

u2
τ

−
∫ ln(aI/z)

ln(bI/δ)

kx Φuu(kx)

u2
τ

d(ln kx), (3.7b)

BI (z; Reτ ) = CI (z; Reτ ) −
[
AI,0 + AI,1

( z
δ

)]
ln

(
bI

aI

)
. (3.7c)

Here, CI(z; Reτ ) represents the contribution of the spectrum for kx < aI/δ and kx > bI/z
to the turbulence intensity, and it should depend weakly on z and Reτ due to the
Kolmogorov-scaling part in figure 4 and the weak (z/δ)-dependence of (3.4a) and (3.4b)
within layer I. In (3.7a) and (3.7c), the Taylor series expansion allows AI,1(z/δ) to be
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approximated further as

AI,1

( z
δ

)
= AI,1

(zI,m

δ

)
+ dAI,1

d(z/δ)

∣∣∣∣
z=zI,m

(z − zI,m)

δ
+ O

( |z − zI,m|2
δ2

)
, (3.8)

where zI,m = √
zmzo is chosen to be the geometric mean of zm and zo, so that the

right-hand side of (3.8) becomes a good approximation to AI,1 over the entire layer I
in the ‘logarithmic’ wall-normal coordinate. The same approximation can be applied
to CI(z; Reτ ) in (3.7b). Since zI,m/δ is a function of Reτ from zm/δ = 3.6Re−0.5

τ , the
streamwise turbulence intensity is finally given by

u′u′

u2
τ

= −AI(Reτ ) ln
( z
δ

)
+ BI(zI,m; Reτ ) + O

( z
δ

)
, (3.9)

where AI(Reτ ) = AI,0 + AI,1(zI,m/δ) and the error at O(z/δ) stems from approximation
of CI(z; Reτ ) in (3.7c) for layer I. We also note that in layer I, the Reynolds shear
stress would evidently be −u′w′/u2

τ = const + O(z/δ), where w′ is the wall-normal
velocity fluctuation. Therefore (3.9) is consistent with the original attached eddy model
of Townsend (1976) with an error of O(z/δ).

Now, the logarithmic wall-normal dependence of the streamwise turbulence intensity
is retrieved in (3.9) as in the classical theories (Townsend 1976; Perry & Chong 1982;
Perry et al. 1986) with a small error at O(z/δ) ∼ 10−1, indicating that the classical
result is indeed a reliable first approximation to the streamwise turbulence intensity in
layer I. Importantly, the Townsend–Perry constant AI in this case emerges as a function
of Reτ , and, to our knowledge, the present study provides the first rigorous derivation
for this feature – it would depend weakly on Reτ , given AI,1 ∼ O(z/δ) from (3.6b).
We note that this is a combined consequence of (3.6b) and the nature of zm (or zI,m)
depending on Reτ . Since zm is a function of Reτ due to the viscous wall effect, the
Reynolds-number-dependent nature of AI(Reτ ) in (3.9) essentially originates from the
role of viscosity ignored in the original theories (e.g. Townsend 1976; Perry & Chong
1982; Perry et al. 1986). This is evident from zm/δ → 0 in the limit as Reτ → ∞: that
is, the velocity slip condition (i.e. non-zero spectrum at z = zm) reaches all the way down
to the wall in such a limit. In this case, as z/δ → 0, AI becomes constant from (3.6b), and
the error of O(z/δ) in (3.9) vanishes. Therefore (3.9) consequently becomes identical to
(2.6) from the original model of Perry et al. (1986) in the limit as Reτ → ∞ and z/δ → 0.

It should, however, be mentioned that the use of the mean-value theorem in (3.6) for
the derivation of (3.9) is the key difference from that of (2.6) in Perry et al. (1986).
The derivation here is more general and inclusive than that in Perry et al. (1986),
because it does not rely on the existence of a k−1

x spectrum. Instead, it suggests that
a more general condition for the existence of an approximate logarithmic wall-normal
dependence of the streamwise turbulence intensity is the existence of the premultiplied
power-spectral density of O(1) for O(1/δ) ≤ kx ≤ O(1/z) (red-shaded region in figure 4),
which is entirely consistent with the experimental data in figure 3. Here, it is important
to note that this behaviour essentially originates from the spectrum scalings in (3.1a)
and (3.1b), the general versions of (2.2) and (2.3) for finite z/δ, because (3.9) is simply
a consequence of applying the mean-value theorem in (3.6) with them. Since (2.2) and
(2.3) depict the δ-scaling inactive motions of large eddies and the z-scaling self-similar
eddies, the theoretical development here is also well within the framework of the attached
eddy hypothesis. Lastly, it is worth mentioning that a more accurate description for
�AI,0(zI,m/δ) may well be possible from a viewpoint of scaling with Reτ . The recent
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effort made by Vassilicos et al. (2015) can be interpreted in such a context, as it is based on
a prescribed semi-empirical description for the spectrum lying between the wavenumber
ranges for (2.2b) and (2.5).

3.3. Determination of AI and BI from experimental data
While the analysis in §§ 3.1 and 3.2 provides an insight into the relationship between the
power-spectral density and the streamwise turbulence intensity at finite Reynolds numbers,
there is a practical issue in applying it to the data obtained from laboratory experiments
and numerical simulations. This issue is related to how one would choose AI,0, aI and bI
robustly. To this end, here we propose a simple semi-empirical modelling framework for
the streamwise turbulence intensity by leveraging the mean-value theorem (3.6). We start
by writing the turbulence intensity as

u′u′

u2
τ

=
∫ ∞

−∞
kx Φuu(z; kx; Reτ )

u2
τ

d(ln kx)

=
[

ln
(

bI,s

z

)
− ln

(aI,s

δ

)]
ΠI(z; Reτ )

=
[

ln
(

bI,s

aI,s

)
− ln

( z
δ

)]
ΠI(z; Reτ ), (3.10a)

where

ΠI(z; Reτ ) =
[

ln
(

bI,s

aI,s

)
− ln

( z
δ

)]−1 ∫ ∞

0

kxΦuu

u2
τ

d(ln kx). (3.10b)

Here, aI,s and bI,s are constants that play roles similar to those of aI and bI in figure 4, but
their values are not necessarily the same. However, given the analysis in § 3.2, they need to
be chosen from the wavenumbers of δ- and z-scaling regions of the premultiplied spectra,
and have to be constant at all Reynolds numbers. While this sets out a condition for aI,s and
bI,s to be met, it is also important to note that they cannot be chosen arbitrarily. Although
(3.10) is supposed to automatically yield a streamwise turbulence intensity in the form of
(3.7a) for any values of aI,s and bI,s, the last line of (3.10a) implies that it has a single
degree of freedom for the determination of AI and BI in (3.7a) (i.e. the value of bI,s/aI,s).
Indeed, if bI,s/aI,s < 1 is chosen, then BI in (3.7a) becomes negative from (3.10a), which
would obviously be non-physical. Therefore the last condition for aI,s and bI,s to be met
is that they must be chosen such that ln(bI,s/aI,s)ΠI(z; Reτ ) would represent BI in (3.7a)
well, while ensuring bI,s/aI,s > 1.

In the present study, aI,s = π/5 and bI,s = 2π are chosen so that λx,I a(≡ 2πδ/aI,s) =
10δ and λx,I b(≡ 2πz/bI,s) = z. These values are obtained by trial and error. To do so, a
range of candidate values of aI,s and bI,s are first selected from the spectra in figure 3, so
that λx,I a and λx,I b lie in the δ- and z-scaling regions, respectively. Indeed, figure 3 shows
that the premultiplied spectra in layer I scale well with δ for λx 	 λx,I a, and with z for
λx 	 λx,I b, and that bI,s/aI,s > 1, consistent with the purpose of aI,s and bI,s introduced
here. Once this is ensured, the final values of aI,s and bI,s are determined by monitoring
the form of ΠI(z) within the layer. If a set of sensible values is chosen, then ΠI(z) must
exhibit a plateau around z = zI,m in layer I. Indeed, figure 5 demonstrates that, for the
given aI,s and bI,s, ΠI(z) remains approximately constant in layer I. Once aI,s and bI,s are
determined, the resulting streamwise turbulence intensity is approximated around z = zI,m
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Figure 5. ΠI(z) (solid line) from (3.10b), and AI (dashed line) from (3.11b): (a) Reτ = 6123; (b) Reτ =
10 100; (c) Reτ = 14 680; (d) Reτ = 19 680. Here, aI,s = 2π (λx,I a = 10) and bI,s = π/5 (λx,I b = 1).

(see also (3.9)):

u′u′

u2
τ

	 −AI(Reτ ) ln
( z
δ

)
+ BI(Reτ ), (3.11a)

where

AI(Reτ ) = ΠI(zI,m; Reτ ), (3.11b)

BI(Reτ ) = ΠI(zI,m; Reτ ) ln
(

bI,s

aI,s

)
. (3.11c)

The values of AI(Reτ ) and BI(Reτ ) are then obtained from (3.11b) and (3.11c), respectively.
In the present study, the values of aI,s = π/5 and bI,s = 2π are first determined at
Reτ = 19 680 and are subsequently used for the other Reynolds numbers. Figure 6 shows
the streamwise turbulence intensity and its approximation from (3.11). With the given
aI,s and bI,s, the proposed framework in (3.10) determines both AI and BI well, so that
(3.11a) becomes a good fit to the turbulence intensity in layer I at all the Reynolds
numbers. The computed values of AI(Reτ ) and BI(Reτ ) are also reported in table 1 with
the approximation error of the model (3.11a) in layer I. The maximum error is found to be
less than about 4 % at all the Reynolds numbers considered.
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Figure 6. Streamwise turbulence intensity (solid line) and its approximation given by (3.11) (dashed line) in
layer I: (a) Reτ = 6123; (b) Reτ = 10 100; (c) Reτ = 14 680; (d) Reτ = 19 680. Here, aI,s = π/5 (λx,I a/δ =
10) and bI,s = 2π (λx,I b/z = 1).

Reτ 6123 10 100 14 680 19 680

AI 1.01 1.02 1.04 1.09
BI 2.33 2.35 2.39 2.51

Error 1.1 % 1.6 % 4.1 % 2.5 %

Table 1. The Reynolds-number dependence of AI and BI from (3.11) with aI,s = π/5 (λx,I a/δ = 10) and
bI,s = 2π (λx,I b/z = 1). Here, Error ≡ maxz |u′u′model − u′u′|/u′u′ for z ∈ [zm, zo], where u′u′model is from
(3.11), and it indicates the maximum error of the proposed model in layer I.

4. Extension to layer II

4.1. Scaling of spectra
The model developed in § 3 is further extended to layer II where zi ≤ z ≤ zm with
z+

i = 200 and z+
m = 3.6Re1/2

τ (z+
m = 505 at Reτ = 19 680). In particular, here we shall

take an empirical approach for the information that cannot be retrieved solely with scaling
arguments. Given the importance of viscous forces in this layer, the power-spectral density
should be a function of uτ , kx, z, δ and δν(≡ ν/uτ ). Without loss of generality, the
outer-scaling part of the spectrum for kx ∼ O(1/δ) would therefore be written as a function
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of z+ and Reτ (= δ/δν) as

Φuu(kxδ, z+, Reτ )

u2
τ

= Φuu(kx, z+, Reτ )

δu2
τ

= g1,II(kxδ, z+, Reτ ), (4.1a)

with the corresponding premultiplied spectrum

kx Φuu(kx)

u2
τ

= kxδ g1,II(kxδ, z+, Reτ ) = h1,II(kxδ, z+, Reτ ). (4.1b)

Similarly, the z-scaling part of the spectrum is written as

Φuu(kxz, z+, Reτ )

u2
τ

= Φuu(kx, z+, Reτ )

zu2
τ

= g2,II(kxz, z+, Reτ ), (4.2a)

and the premultiplied spectrum is

kx Φuu(kx)

u2
τ

= kxz g2,II(kxz, z+, Reτ ) = h2,II(kxz, z+, Reτ ). (4.2b)

Here, we note that the introduction of a possible dependence on z+ and Reτ in (4.1) and
(4.2) is to describe the viscous wall effect on z- and δ-scaling motions, the scaling and
the corresponding energy balance of which were discussed in detail in Hwang (2016)
and Cho et al. (2018) using a linear theory and numerical simulation data. While the
contribution of δ-scaling motions is sometimes accounted for separately (Baars & Marusic
2020a,b; Deshpande et al. 2020), here we shall consider the contributions of all the
energy-containing motions simultaneously.

The spectra given in (4.1) and (4.2) suggest that the dependence of h1,II and h2,II on
z+ and Reτ would be the major complication in extending the analysis in § 3 to layer II.
Therefore, from here, we shall further proceed by empirically modelling the experimental
data of Samie et al. (2018) in layer II. As discussed in § 2, the contour lines for λx � 10δ in
figure 2 are not parallel to λx = 10δ. They rather appear to fall off approximately linearly
towards the wall in the logarithmic coordinates, indicating that the outer-scaling part of
the spectra would empirically follow a mixed scale of λx/δ ∼ (z+)p, where p is a positive
number to be determined. Based on this observation, (4.1) may be written as

h1,II(kxδ, z+, Reτ ) 	 h̃1,II

(
kxδII,

z
δII

)
, (4.3a)

where δII = δ(z+)p is the empirical similarity length scale formed by δ and z+, and the
z/δII-dependence is introduced to admit the small deviation of the spectra in layer II
similarly to the case in layer I (§ 3.1). As for the inner-scaling part of the spectra, the
contour lines for 10−2δ ≤ λx ≤ 10−1δ in layer II (figure 2) are still approximately parallel
to λx = z. Therefore h2,II(kxz, z+) in (4.2) is also written as

h2,II(kxz, z+, Reτ ) 	 h̃2,II

(
kxz,

z
δII

)
, (4.3b)

where z/δII is introduced to allow for a small variation in the wall-normal location.
Figure 7 confirms that the empirical scalings in (4.3a) and (4.3b) are reasonably good:
the outer-scale part of the premultiplied spectra scales well with δII for p = 0.41 obtained
empirically (figure 7a), while the inner-scaling part shows good scaling with z (figure 7b).
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Figure 7. Premultiplied streamwise power-spectral density of streamwise velocity in layer II (Reτ = 19 680):
(a) δII-scaling and (b) z-scaling. Here, δII = δ(z+)p with p = 0.41.

The form of (4.3a) and (4.3b) is now identical to that of (3.1a) and (3.1b), if δ is replaced
by δII . The procedure in § 3.1 can therefore be applied exactly in the same manner. Without
loss of generality, this yields

kx Φuu(kx)

u2
τ

= hII

(
kxlII,

z
δII

)
(4.4)

for 1/δII � kx � 1/z with z � lII � δII , and the resulting premultiplied power-spectral
density for 1/δII � kx � 1/z is given by

Φuu(kx)

u2
τ

= hII(kxlII, z/δII)

kx
. (4.5)

Equation (4.5) suggests that a k−1
x spectrum would also be observed at each wall-normal

location in layer II. As shown in figure 7, such a spectrum does seem to appear for 50z �
λx � 0.5δII in the form of a peak or a narrow plateau. It also indicates that the intensity of
the k−1

x spectrum would vary in the wall-normal direction by O(z/δII) in layer II. Given
the definition of layer II, z/δII ∼ O(10−2). Figure 7 shows that the variation of the peak
intensity of each premultiplied spectrum is much smaller than that in layer I (compare with
figure 3), supporting the relevance of (4.5).

4.2. Turbulence intensity
Given the form of spectra shown in (4.3a), (4.3b) and (4.5), the turbulence intensity in
layer II can also be obtained by applying the same procedure in § 3.2. In Appendix A, it is
shown that the streamwise turbulence intensity in layer II takes the following form:

u′u′

u2
τ

	 −AII(zII,m; Reτ )
[
ln

( z
δ

)
− p ln(z+)

]
+ BII(zII,m; Reτ ), (4.6)

where zII,m = √
zizm, AII(zII,m; Reτ ) and BII(zII,m; Reτ ) are defined in Appendix A. Here,

we note that the term with z+ now emerges, and it incorporates the effect of the viscosity
into the original attached eddy model. Also, similarly to layer I, AII and BII in (4.6) are
expected to depend weakly on Reτ (see Appendix A). Lastly, following the modelling
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Figure 8. ΠII(z) (solid line) from (4.7c) and AII (dashed line) from (4.7a): (a) Reτ = 6123; (b) Reτ = 10 100;
(c) Reτ = 14 680; (d) Reτ = 19 680. Here, aII,s = 2π/3 (λx,II a/δII = 3) and bII,s = 2π (λx,II b/z = 1).

procedure for layer I in § 3.3, AII(zII,m; Reτ ) and BII(zII,m; Reτ ) can be semi-empirically
determined, such that

AII(Reτ ) = ΠII(zII,m; Reτ ), (4.7a)

BII(Reτ ) = ΠII(zII,m; Reτ ) ln
(

bII,s

aII,s

)
, (4.7b)

where

ΠII(z; Reτ ) =
[

ln
(

bII,s

z

)
− ln

(
aII,s

δII

)]−1 ∫ ∞

0

kxΦuu

u2
τ

d(ln kx), (4.7c)

and aII,s and bII,s are the fitting constants for the model in (4.6), similarly to aI,s and
bI,s in § 3.3. In the present study, aII,s = 2π/3 and bII,s = 2π are obtained by trial
and error with the experimental data for all the Reynolds numbers. The determination
procedure of aII,s = 2π/3 and bII,s = 2π follows that in § 3.3 exactly. This leads to
λx,II a(≡ 2πδII/aII,s) = 3δII and λx,I b(≡ 2πz/bII,s) = z. We note that the premultiplied
spectra in layer II scale well with δII for λx 	 λx,II a (figure 7a) and with z for λx 	 λx,II b
(figure 7b), serving the introduced purpose of aII,s and bII,s. Figure 8 shows ΠII(z) and
the corresponding AII(Reτ ) determined at all the Reynolds numbers. Similar to the case
of layer I, ΠII(z) remains approximately constant in layer II with the given aII,s and bII,s,
and the resulting AII(Reτ ) is also found to depend weakly on the Reynolds number. The
streamwise turbulence intensity and its approximation from (3.11) are shown in figure 9.
For the given aII,s and bII,s, the model in (4.6) and (4.7) well approximates the streamwise
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Figure 9. Streamwise turbulence intensity (solid line) and its approximation given by (4.6) (dashed line)
in layer II: (a) Reτ = 6123; (b) Reτ = 10 100; (c) Reτ = 14 680; (d) Reτ = 19 680. Here, aII,s = 2π/3
(λx,II a/δII = 3) and bII,s = 2π (λx,II b/z = 1). The streamwise turbulence intensity from model (3.11a) for
layer I (dashed-dotted line) is also plotted for comparison.

Reτ 6123 10 100 14 680 19 680

AII 0.81 0.82 0.84 0.88
BII 0.89 0.90 0.92 0.97

Error 0.8 % 1.1 % 3.0 % 0.8 %

Table 2. The Reynolds-number dependence of AII and BII from (4.7) with aII,s = 2π/3 and bII,s = 2π.
Here, Error = maxz |u′u′model − u′u′|/u′u′ for z ∈ [zi, zm], where u′u′model is from (4.6), and it indicates the
maximum error of the proposed model in layer II.

turbulence intensity in layer II at all the Reynolds numbers. Finally, the values of AII(Reτ )

and BII(Reτ ) are listed in table 2. The maximum error of the model of (4.6) remains at less
than 3 %.

5. Conclusions

In the present study, we have presented a spectrum-based attached model by generalising
that of Perry et al. (1986) for small but finite z/δ and for finite Reynolds numbers. In
layer I (the upper logarithmic layer or inertial sublayer), the analysis showed that, without
loss of generality, the intensity of the spectra should vary in the wall-normal direction
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considerably, consistent with the experimental data. By applying the mean-value theorem
to spectra in layer I, the streamwise turbulence intensity is subsequently calculated.
This revealed that the Townsend–Perry constant must be weakly dependent on Reynolds
number. More importantly, it was shown that a more general condition for the approximate
logarithmic wall-normal dependence of the turbulence intensity is the existence of
premultiplied power-spectral intensity of O(1) for 1/δ � kx � 1/z, and that the emergence
of k−1

x spectra is not a necessary condition for such a form of turbulence intensity. The
analysis was further extended to layer II (the lower logarithmic layer or mesolayer), and
a near-wall correction term for the turbulence intensity in this layer was subsequently
proposed. Finally, the predictions of the proposed model and all the related assumptions
have been carefully validated with the high-fidelity experimental data by Samie et al.
(2018).

Perhaps the primary contribution of the present study would lie in addressing the two
issues questioned repeatedly for a long time: (1) Would a k−1

x spectrum be necessary for the
logarithmic wall-normal dependence of turbulence intensity? (2) Is the early observation
of Morrison et al. (2001, 2004), referred to as the ‘incomplete similarity’, inconsistent
with the model of Perry et al. (1986)? The present study showed that the answer to the
first question is ‘no’, because the more general condition is the existence of premultiplied
power-spectral intensity of O(1) for 1/δ � kx � 1/z. We note that this condition is also
physically consistent with the notion of the attached eddy hypothesis of Townsend (1976)
(see the discussion in § 3.2) and is therefore inclusive of the original model of Perry et al.
(1986). The answer to the second question is that the discrepancy between the theoretical
result of Perry et al. (1986) and the observation of Morrison et al. (2001, 2004) originates
from the size of z/δ in the ‘idealised theoretical model’ and the ‘practical experimental
measurement’: the former assumes z/δ � 1, which strictly implies z in the limit as z/δ →
0, whereas the latter considers small but still finite z/δ for a ‘practical’ reason and/or
due to the ‘conventional’ definition of the logarithmic layer. Indeed, if the assumption
z/δ → 0 is relaxed, then the theoretical model does exhibit a behaviour consistent with
the experimental data.

Finally, the model proposed in this study may well be refined further by making
additional modelling efforts. Such tasks include semi-empirical description of the
turbulence intensity above layer I and below layer II. The Kolmogorov-scaling part of the
spectrum in figure 4 can also be modelled in a more delicate manner like in the original
model of Perry et al. (1986). These tasks remain for future work.
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ln (aII/δII) ln (bII/z) ln (kx)

AII,0 ~ O(1)

kxΦuu(kx)

u2
τ

Inertial subrange &

Kolmogorov

scalingArea 

~ –AII,0 ln + pAII,0 ln
z z+

δ

δII-scaling

z-scaling

�AII,0 = kxΦuu(kx)/u
2
τ – AII,0

Figure 10. A schematic diagram of the proposed model for the spectra in layer II.

Appendix A. Streamwise turbulence intensity in layer II

Similarly to the model for layer I in § 3.1 (figure 4), a schematic diagram of the spectrum in
layer II can be sketched as shown in figure 10. Given the discussion in § 4.1, the spectrum
for aII/δII ≤ kx ≤ bII/z in layer II takes the form

kx Φuu(kx)

u2
τ

= hII

(
kxlII,

z
δII

)
for aII/δII � kx � bII/z, (A1a)

and aII and bII are given such that

kx Φuu(kx)

u2
τ

∼ O(AII,0) at kx = aII/δII and kx = bII/z, (A1b)

where AII,0 is a constant of O(1), and such that �AII,0(kx)(≡ kxΦ(kx)/u2
τ − AII,0) satisfies

∫ ln(bII/z)

ln(aII/δII)

�AII,0(kx) d(ln kx)︸ ︷︷ ︸
≡AII,1(z/δII)

∼ O
(

z
δII

)
. (A1c)

Like the analysis in § 3, AII,0, aII and bII here are chosen such that the area below the
premultiplied spectrum for aII/δ ≤ kx ≤ bII/z is approximated by the red-shaded region
in figure 10 with an error of O(z/δII). Such a choice of AII,0, aII and bII must always be
possible, because the mean-value theorem ensures the existence of AII,M(z/δ) such that

AII,M(z/δII) =
[

ln
(

bII

z

)
− ln

(
aII

δII

)]−1 ∫ ln(bII/z)

ln(aII/δII)

kx Φuu(kx; z/δ)
u2
τ

d(ln kx), (A2a)

where

AII,M(z/δII) = AII,0 + AII,1(z/δII), (A2b)

with AII,1(z/δII) being of O(z/δII) from the Taylor expansion of AII,M(z/δII).
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The turbulence intensity is subsequently written as

u′u′

u2
τ

=
∫ ∞

−∞
kx Φuu(kx; z)

u2
τ

d(ln kx) =
∫ ln(bII/z)

ln(aII/δII)

kx Φuu(kx)

u2
τ

d(ln kx) + CII(z; Reτ )

=
∫ ln(aII/z)

ln(bII/δII)

AII,0 d(ln kx) +
∫ ln(bII/z)

ln(aII/δII)

�AII,0(z/δII) d(ln kx) + CII(z; Reτ )

= −
[

AII,0 + AII,1

(
z
δII

)]
ln

(
z
δII

)
+ BII(z; Reτ ), (A3a)

where

CII(z; Reτ ) = u′u′

u2
τ

−
∫ ln(bII/z)

ln(aII/δII)

kx Φuu(kx)

u2
τ

d(ln kx), (A3b)

BII(z; Reτ ) = CII(z; Reτ ) +
[

AII,0 + AII,1

(
z
δII

)]
ln

(
bII

aII

)
. (A3c)

Here, CII(z; Reτ ) represents the contribution of the spectrum for kx < aII/δ and kx >

bII/z to the turbulence intensity, and it would depend weakly on z and Reτ due to the
Kolmogorov-scaling part in figure 10. The turbulence intensity is further approximated as

u′u′

u2
τ

= −AII(Reτ )
[
ln

( z
δ

)
− p ln z+

]
+ BII(zII,m; Reτ ) + O

(
z
δII

)
, (A4)

where zII,m = √
zizm and AII(Reτ ) = AII,0 + AII,1(zII,m/δ). Here, the approximation error

of (A4) is estimated to be of O(z/δII). This is O(10−2) at Reτ = 19 680 from the definition
of layer II. However, it should be mentioned that, in practice, the approximation error of
(A4) for the experimental data is expected to be considerably bigger than this, because
(A4) also depends on the accuracy of the empirical relations in (4.3a) and (4.3b).
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